An embedding theorem for Lie algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracial Algebras and an Embedding Theorem

We prove that every positive trace on a countably generated ∗-algebra can be approximated by positive traces on algebras of generic matrices. This implies that every countably generated tracial ∗-algebra can be embedded into a metric ultraproduct of generic matrix algebras. As a particular consequence, every finite von Neumann algebra with separable pre-dual can be embedded into an ultraproduct...

متن کامل

Wreath Products and Kaluzhnin-krasner Embedding for Lie Algebras

The wreath product of groups A B is one of basic constructions in group theory. We construct its analogue, a wreath product of Lie algebras. Consider Lie algebras H and G over a field K. Let U(G) be the universal enveloping algebra. Then H̄ = HomK(U(G), H) has the natural structure of a Lie algebra, where the multiplication is defined via the comultiplication in U(G). Also, G acts by derivations...

متن کامل

Lie Algebras and the Four Color Theorem

We present a statement about Lie algebras that is equivalent to the Four Color Theorem.

متن کامل

Generalized Derivation Tower Theorem of Lie algebras

We give an algorithm of decomposition for a finite-dimensional Lie algebra over a field of characteristic 0 permitting to generalize the derivation tower theorem of Lie algebras.

متن کامل

Note on The Generalized Derivation Tower Theorem for Lie algebras

We provide an algorithm for decomposing a finite-dimensional Lie algebra over a field of characteristic 0 permitting to generalize the derivation tower theorem for Lie algebras, is proved by E. Schenkman [4].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1999

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-99-04865-0